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Abstract-We consider the nonsteady growth of a two-dimensional in-plane shear crack under
the influence ofa critical stress intensity factor criterion at the crack tips and dynamical frictional
stresses on the fracture surface. For a spontaneous rupture initiating at a point and extending
bilaterally, the dynamic stress distribution must be known in advance to determine the stress
intensities at the crack tips. When these stresses are scaled with respect to the singular stresses
at the respective crack tips, an approximation that was found to be suitable for problems of
the arowtb of anti-plane shear cracks that tear with high velocities, is also found to be suitable
in the present case. The region of validity of this approximation is tested for the in-plane mode
of crack growth by comparison with cases of crack histories that are solvable exactly. For the
latter purpose, we use the exact solution to the self-similar problem of uniform bilateral growth
of in-plane cracks, which is found by functionally invariant methods. For low rupture speeds,
iterative methods based on this approximation can be developed to improve the solution. For
the self-similar cases, rupture velocities cannot be areater than the Rayleigh wave velocity in
the medium; we have only considered those cases of non-uniform crack propagation for which
this limit also applies.

I. INTRODUCTION

The dynamics of a two-dimensional fracture that initiates at a point and extends along
a plane fault in an otherwise homogeneous elastic medium, has been studied in some
detail as a model for shallow focus earthquakes [1-4]. Previously Knopoff and Chat
terjee [4] and Chatterjee and Knopoff [5] (henceforth referred to as I and II respectively)
have considered the problem of the anti-plane mode of shear fracture where critical
fracture strengths at the crack tips have been taken into account. In this paper, we
discuss this problem for the case of the in-plane mode of fracture. The anti-plane
problem can be formulated in terms of an integral equation for motions of the 8H-type
in seismological notation; in the present case, dual integral equations are encountered
which couple P and SV motions.

To date, analytical solutions of problems of the extension of two-dimensional plane
strain shear cracks under the influence of cohesive forces at the crack tips have been
limited to the analysis of the growth of semi-infinite cracks ([2, 6, 7], for example) and
the growth of finite cracks ([6] and others). Andrews [3] offers the conjecture that
cracks with extension rates Vc bounded by 0 < Vc < VR and 21/2 13 < Vc < a are stable,
where a, 13 and VR are the po, S- and Rayleigh wave velocities in the medium respec
tively. On the other hand, through the use of a point force load near the tip of a semi
infinite crack, Burridge et al. [7] have found contradictory results, namely that the
region 211213 < Vc < a is stable while the regions 0 < Vc < VR, 13 < Vc < 211213 are
unstable and the region VR < Vc < 13 is forbidden; stability implies that the velocity of
extension of the crack decreases with increase in the load and conversely instability
implies that the crack speeds up with increase of load.

The release of a constrained semi-infinite crack at t = 0 represents a set of initial
conditions that may be physically unrealistic. The development of a crack initiating at
a point is probably more realistic physically especially from the point of view of mod
elling of earthquake sources than is the problem of a pre-existing semi-infinite crack.
We wish to test whether the conclusions drawn from models of extension of semi
infinite cracks are applicable to growing point-source problems.
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In the case of cracks that initiate at a point, the elastic wave radiation from one end
of a crack influences the stress configuration of the opposite edge. We find that the
stress field radiated by one edge always causes the rate of extension of the opposite
edge to be reduced. The rates of extension in the early phases of growth of these cracks
are always less than the Rayleigh wave velocity in the medium. This does not mean
that higher rates of extension are excluded in the latter phases of growth histories. On
the contrary, since the stress fields can propagate with velocities up to the P-wave
velocity, it is possible that triggering of crack segments at rates up to the P-wave
velocity can take place in a suitably inhomogeneous distribution of strength and
prestress.

To model the dynamical shear fracture of cracks with moving edges, we need an
adequate fracture criterion. The solution of a differential equation with moving bound
aries is sensitive to the choice of boundary conditions. In our case, the forces near the
crack tips are modelled as cohesive forces. While the cohesive forces due to molecular
bonding are of negligible importance on the scale of fractures appropriate for an earth
quake, the effects of the geometry of fracture surfaces provide an equivalent set of
cohesive stresses. Real earthquake faults as well as other real fracture surfaces are not
ideal planes but instead consist of a series of geometrical irregularities [8-10); the scale
of self-similarity ranges over many orders of magnitude. In order that fractures on one
segment of a complex fracture surface can trigger motions on a nearby segment, suf
ficient stresses must be available near the crack tip. We model the distribution of
stresses needed to trigger motions on adjacent segments as a distribution of critical
stresses on an equivalent plane fault. If the critical stress is too high to be overcome
by the dynamically generated stress at the crack tip, the crack stops and leaves behind
a large residual stress frozen into the region near the crack tip. These residual stresses
can be involved in the production of aftershocks. Since the edges of our cracks will
be modeled as points, i.e. there is no transition zone to support cohesive forces, the
stresses in the neighborhood of an edge varies as K,-112 where, is the distance from
the edge. We impose the fracture criterion that the stress intensity factor K generated
at an advancing edge of the crack be greater than a property of material Kmat in order
that the crack continues to extend. Additional details regarding this model can be found
in II. (In the present calculation, the quantity Kmat is assumed to have a smooth dis
tribution for the purpose of attaining an understanding of the underlying physics and
mathematics.) Thus our fracture criterion requires that the stress generated by the
advancing crack be greater than or equal to the strength of the material in front of it
in order that it continues to advance. We adopt the above (singular) form of this state
ment to accommodate for the mathematical convenience afforded by allowing the edges
of the crack to be points.

The problem of the propagation of a spontaneous crack initiating at a point is sig
nificantly different from that of the extension of semi-infinite cracks or cracks of finite
initial length. In the latter cases, the crack tip stresses can be completely determined
when the dynamical stress drop is known. But for a crack initiating at a point, the crack
tip stress intensities depend on the unknown distribution of stresses ahead of the crack
tip, which are themselves dependent on both crack edge locus histories. Thus, in these
problems, the cracks enter regions which are not only prestressed statically but are
also dynamically prestressed due to the radiation from the motions between both edges
of the crack. Purely numerical attacks on these nonlinear dynamic crack problems have
been given ([2) and others) but no exact analytical solutions are available for an arbitrary
distribution of cohesions and dynamic stress drop. In the case of the anti-plane mode
of fracture, we have given an exact iterative solution for the stress fields between the
S-wave fronts and the crack tips which advance with sub-S-wave velocity. The stresses
in this spatial interval, scaled by the stresses at the crack tips, can be represented by
a function which is zero at the S-wave front, and unity at the crack front. To first order,
this function can be assumed to be linear (I and 11). It has been shown that, except for
very slow rates ofextension of the crack, this approximation yields solutions for rupture
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histories that are very close to the exact solution, at least for cases of self-similar
uniform propagation of cracks.W~which exact analyti<:al solutions are available.

In this paper we discuss the possibility of applying this approximation to the deter
mination of the stresses outside the torn region for in-plane shear crack propagation
under the influence of cohesion and dynamic friction. We believe that this method
provides a better computational alternative, and may impart more physical insight to
the problem than the purely numerical methods considered previously. For slow rates
of extension of cracks, the solutions obtained from the approximate procedure can be
used as initial estimates for an iteration which converges rapidly to the exact solution.

Below we show that the Rayleigh wave velocity is the maximum velocity of rupture
of a self-similar crack and in the early stages of growth of a non-uniform crack. Thus
the loading functions for these cracks form a transitional state between stability and
instability. For material stress intensity factor K mat that grows at a rate greater than
the critical rate necessary for self-similarity, the cracks may be expected to slow down
and for Kmat that grows at a rate less than these critical rates cracks may be expected
to speed up and may even have velocities approaching a [II].

2. IN·PLANE MODE OF FRACTURE OF A BILATERAL CRACK

Consider an isotropic elastic medium with a, 13 and VR representing the po, S- and
Rayleigh wave velocities respectively. Let a crack initiate spontaneously along the line
x = Z = 0 (Fig. 1) and propagate bilaterally along the ±x-axis. Suppose that after time
t the crack occupies the region

z = 0, - oc < y < oc

I-(t) ~ x ~ I+(t).
(2.1)

For the plane strain problem, the displacement components (u, w) are functions of x,
zand t; the anti-plane component of motion v = O. All of the stresses and displacements
are continuous across the plane of the crack z = 0 except that u is discontinuous within
the above interval. The equations of motion are

ii = 132 [m- 2u.xx + U.u + (m- 2
- 1)W,Xl]

W = 132 [m- 2
w,ll + W,XX + (m- 2

- 1)U,Xl]

(2.2)

where m = l3/a , the comma indicates spatial differentiation with respect to the variables
indicated and the overhead dot indicates time derivative. The relevant components of

.(ct)------

11"----"7"----Z

x

Fig. I. Geometry of in-plane crack at I > O. Initiation is at the y·axis. Crack is infinite in the
y-direction and extends in the ::!:x-direction. The displacement on the crack faces is in the ::!:x

directions.
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the stress tensor are
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CT..... = ~rm-211 .., + (m- 2 - 2)w,;:]

0';:;: = ~lm-2w.;: + (m- 2 - 2)u..,j

CTx ;: = ~(U.;: + w.X )

(2.3)

where ~ is the shear modulus.
We describe the deviations of all quantities from their values in the prestressed state

I < O. Accordingly, we prescribe the following boundary conditions:
(i) (Tx::(x, 0, I) = -f(x, I), z = 0, L(I) < x < 1+(1)

(ii) IV is continuous across z = 0
(iii) u is continuous outside the crack

[u] = 0, z = 0, x < L (I), x> 1+ (I) (2.4)

where luj(x,1) = u(x, 0 I , I) - u(x, 0 ,I); luJ is nonzero inside the above interval.
The function [u] is anti-symmetric in z and hence we only need consider the region
z ~ 0; we set [u] = 2u(x, 0+, I). All the stresses and displacements approach zero as
z- ±oc.

The solution to the problem follows Kostrov [6] who has performed a significant
amount of expository mathematics. Kostrov has studied the extension of semi-infinite
and initially finite cracks under in-plane stresses. The notation and mathematics de
veloped therein are of use in our case as well. Two transformations (1)(,1.', I; s) and
tZ)(x, I; s) of a given function f(x. I) can be defined by

aLlISt lJ = - f(x - Tl I - STl} dTl = j(lJ
al 0 '

iJ rrls

t Z
) = iii Jo f(x + TI, I + STI} dTl = rZ

).

(2.5)

The integrals /0).(2) in (2.5) are evaluated in the X-I plane along lines through (x, I),
which make angles ± tan - I S with the positive x-axis (Fig. 2).

Let CTZ(X, I) be the shear stress in the plane of the crack, CTxz(X, 0, I) = CTz(X, I);
(Tz(x, t) is known in the interval 1_ (1) < x < 1+ (1) through (2.4). Four functions F:= (x, I)

Fig. 2. The lines of integration for II> and 12> are PQ and PR respectively. The dashed parts
lie in the undisturbed regions and do not contribute to the integrals. The angle 1I '" tan - IS,
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and G:!:(x, t) are introduced which are defined in terms of the stress 0"2(X, t) and dis
placement [u](x, t) through

F+(x,t) =0"2(X,t) - (11R1 - a- 1)IJ2(lIR 1 -13-1)1I20'~1)(x,t;ilj(I)IS(-lIi(l)

I i~-I{lIS(-s)}(s - a- I )1I2(13- 1 - S)IJ20'~Il(X,t;s)-- ~
21T a-I (lIR I

- s)
(2.6a)

(2.6b)

(2.6c)

(2.6d)

with four additional equations obtained by replacing the subscripts + by - and in
terchanging the superscripts (I) and (2). Kostrov [6] has shown that

F;o;(q,p) -

(
-2 2 2)"2 + G;o;(q, p) = O.p a - q p

(2.7)

In (2.6}{f(x)} = f(x + iO) + f(x - iO)for any function f(x), and S( ±s) are the Wiener
Hopf decomposition factors of the Rayleigh denominator R(s) and are given by [12]

(2.8)

where

(2.9)

For the anti-plane strain mode of fracture, the relationship between the transformed
stress drop O"yr,(q, 0, p) = O"yr,(q, p) and the displacement discontinuity [V](q, p) has
been found to be [6]

which is similar to (2.7).
Since [u](x, t) = 0 for x > I ... (t), it follows from (2.6b) that (Fig. 3)

Similarly

G_(x, t) = 0, x < L(t).

(2. lOa)

(2. lOb)

From (2.7) and (2.10) we see that the problem of the in-plane shear crack has been
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-at

Fig. 3. Regions of integration forthe determination of F~ and G:t:,. Triangles A, B identify the
regions of integration for the integral in (2.6a) for x ~ 1_ (,) respectively while C and D identify
the regions of integration for the integra) in (2.6b) for x ~ 1+('). The angles 81 = tan-I(a-I)

and 82 = tan-I(a-I}.

reduced to that of the anti-plane crack in which the characteristic velocity is changed
from the S-wave velocity ~ to the P-wave velocity a. This enables us to write down
the stress intensity factors for the in-plane problem and accordingly the fracture cri
terion in terms of F + (x, t) and F _(x, I). For the determination of these functions we
use (2.5) and (2.6) where the unknown stresses (12(X, t) outside the rupture zone are
approximated by the approximation in I and II.

3. STRESS INTENSITY FACTORS AT THE CRACK TIPS

Let us assume that

g~n.)_

F + (x, t) = 17[1- (I) _ xJ"2 + 0(1)

g~.)-

F_(x, I) = 17[1-(/) _ xJ112 + 0(1)

g-
0'2(X, t) = l7[L (I) _ X]112 + 0(1)

(3.la)

(3.1 b)

(3.lc)

(3.2a)

(3.2b)

(3.2c)

asx- L(I)-.
The superscripts (m) for the functions g, represent the modified stress intensity

factors while the first subscript identifies the F function and the second subscript in
dicates the crack edge. Thus, for example, g<:'!+ is the modified stress intensity factor
for F+ at the positive edge of the crack. In these expressions we have assumed that
the stresses F and (1 have the well-known reciprocal square root singularity just beyond
the appropriate edges of the crack, which is a property of cracks with sharp linear
edges. Equations (3.lc) and (3.2c) indicate the self-regulating character of the growth
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of the crack and describe the condition fOr the extension of the crack. The coefficients
of cohesion g:t are measures of the ability of the material at the edges of the crack to
absorb singular stresses and are properties of the material that are presumed to be
specified in advance. If the dynamically generated stresses are less than the first term
on the right hand side of (3.1c) or (3.2c), then the extension of the crack ceases. Thus
(3.1c) and (3.2c) describe the critical stress intensity fracture criterion for the extension
of the crack tips. We show below that self-similar cracks extend with velocity less than
the Rayleigh wave velocity. We consider here only those cases of non-uniform crack
extension for which I i:t I ;a VN.

Equations (2.6) give

g(m> f (,' )+.+ = g+ I +

tl!:'!- = g - f I <i - )
g(~!+ = g+fl(-i+)

g~!- = g-fl( -L)
where

(l - xa- I )1/2(1 - xl3- I )112
fl(x) = S( -x I)(l - xv; I)

Inverting (2.7), we have (Fig. 4)

(3.3)

(3.4)

(3.5)

(3.6)

J (0 ("lll F • (~, 1') d~ d11
G=(~, 1')0) = - 211' Jo Jo [(~o - ~)(1')0 _ 1')]112

where ~, 11 are the characteristic coordinates defined in terms of the P-wave velocity
as

~ = at + x
11 = at - x.

We let ~ = ~-(1') or 1') = 1')-m be the coordinates of the negative crack edge
x = L (t) and ~ = ~+ (11) or 1') = 11 + m be those for the positive crack edge x = ,+ (t).
Then from (2.10) and (3.5), it follows that

(~F+(~, 110) d~ = 0 ~ > ~+ (1')0) (3.7a)
Jo (~o - ~)112 '

(TIll F-(~.. 11) 1~1') = 0, 110> 11-(Eo). (3.7b)
Jo (1')0 - 11)

Fig. 4. The shaded area is the region of integration for the determination of G,. (~. 'Il0).
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Fig. 5. Region of approximation of stresses used in (3.10) is shown by dashed lines. The angles
e'" tan-l(uR I ) or tan-I(Q-I);:a 9;:a tan-I(~-I).

(3.9)

(3.Sb)

From (3.7) we can write down expressions for F + and F _ outside the crack region,
in terms of their values inside. These expressions are

F (9 ) - I f~+hlO) F+ (~, Tlo)[~+ (Tlo» - ~JI/2 d~

+ ), TIll - 1'I'[~0 - ~+ (Tlo)] 1/2 Jo (~ll - ~) , (3.8a)

~o > ~+ (Tlo)

and

_ I i1J-(~O) F-(~o, TI)[TI-(~o) - TI}1/2 dTl
F-(~, Tlo) - [}1/2 '

1'1' Tlo - TI- (9) 0 (TIll - TI)

Tlo > TI - (~ll)'

We let ~o- ~+(Tlll)+' and apply (3.1) and (3.3). Then

_ I [a - I+(to)] 1/2 rt +(1JO
) F+(~, Tlo) d~

g+ - fIO+(lo» 2a Jo [~+(TI() - ~11/2 .

Equation (3.9) determines the condition for the extension of the positive edge of the
crack in terms of the values of F + behind the crack. A similar equation for the condition
that ~escribes the negative edse of the crack can be obtained from (3.9) by replacing
g+, '+(10), F+, ~+ by g-, -L(to), F_ and TI- respectively. From (2.5) and (2.6) it
follows that a determination of F:!: behind the crack edges requires that we know the
values of 0'2(X t) in the same region. But 0'2 is known inside the tom region from the
boundary condition (2.4). Outside the tom region 0'2 depends on the crack tip loci':: (1),
which in turn depend on 0'2, as in the case of anti-plane mode of fracture discussed in
I and n. We interrupt this hierarchy ofequations for the determination of0'2 by assuming
the following distribution of 0'2 outside the tom region. With reference to Fig. 5, we
let

(3. lOa)

(3.l0b)

(3.lOc)
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Fig. 6. Exact (solid) and approximate (dashed) stress distribution scaled with respect to the
stresseS at the edges of the crack for self-similar in-plane propaption. V+/VR == 0.265 and
V -/VR .. 0.372. The cusps in the exact solution are due to the discontinuous derivatives at

the S-wave front.

(3.10<1)

o~ r;;;ii rl, X < L (t).

Equations (3.10) have the appropriate singular behavior of the functions F::!:, (12 as
r - rl and also satisfy the condition of zero stresses on the P-wave fronts. However,
they do not reflect the discontinuous derivative at the S-wave fronts (Appendix and
Fig. 6). In I and II we have investigated the validity of Ihis approximation in the case
of anti-plane strain crack propagation; this approximation yields a very good estimate
of the cohesive forces except for very slow rates of extension of the crack. In the next
section, we determine the equations of motion of the crack tips for general distribution
of cohesion and dynamic friction. Then we discuss the special case of self-similar
uniform bilateral in-plane crack. The latter problem has an exact analytical solution
(see Appendix) which can be used to gauge the range of validity of the approximation
(3.10).

4. EQUATIONS OF MOTION OF THE CRACK TIP. GENERAL CASE

In what follows, we scale all the velocities with respect to a. We first compute the
tearing loci by ignoring the back edge radiation, which implies that for the determination
of the location of the positive edge we assume that the negative edge extends with the
P-wave velocity and vice versa. In making this assumption we may violate restrictions
on the crack speed we may invoke later, such as one in which the crack velocity is
less than the Rayleigh wave velocity. Nevertheless this restriction provides useful initial
estimates for the function 1+. From (2.6a), we have

%+1

a (I+v- I

F+(x, t) = -p(x, t) + Cat Jo R p(x - Tj, t - V;ITj) dTj

%+1

+ _I (~-I Ms)! ('j';'; p(x - Tj, t - STJ) dTj ds
21T JI at Jo

(4.1)
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where c is the constant (vii I - 1)1/2(vii I - ~-I)1/2IS( -vii I) and

(4.2)

Hence as an initial approximation, the equation of motion of the positive edge of the
crack (11) is

which, using (3.3), becomes

2112(1 - i+/f!»ll2g + _ (hC'Ilol f +(t, 110) d11
S(-i:;:I)(l - i+/VR) - Jo (t+ - ~)112 •

(4.3)

Equations (4.1) and (4.3) plus an initial condition i+ = VR, completely determines the
initial estimate of 1+(1). We find in Section V below that self-similar cracks extend
with velocities less than or equal to the Rayleigh wave velocity. We can not state that
this is the case for later histories ofinhomogeneous crack propagation, in which radiated
p- and S-waves may trigger motions in advance of the Rayleigh wave front, but for'
the initial phases of the rupture, our initial condition suffices. Similarly, we can de
termine initial estimates of L (t). The quantity S( - V-I) is defined in (2.9) and is a
smoothly varying function in the range 0 ~ v ~ VR. This leads to the following ap
proximation

where

S

S(-v- I
) = ~ aivi,

i-O

an = 0.9977096

at = 0.6056030

a2 = - 5.8835644

a3 = 45.2408603

a4 = 125.7868148

as = 129.1117385

(4.4)

(4.5)

with a maximum error of 0.97%. For given x and t, i+ can now be obtained from (4.3)
by a Newton-Raphson method and hence we can solve (4.3) by a Runge-Kutta pro
cedure.

If we wish to take into account the influence of the back edge radiation on the
determination of the locus of the positive edge 1+(0, we replace the negative edge by
its initial estimate and then use (3.9) as the fracture criterion. The integral on the right
hand side of (3.9) can be split into two parts, one inside the tom region and the other
outside it. Outside the torn region we use (3.lOd) and (3.3). Inside the torn region
F+ (x, t) may be obtained as follows. From (2.5)

x < 1+(1) (4.6)
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where the upper limit corresponds to the P-wave front. With reference to Fig. 5 and
using (3.IOd),

where 6 = tan - IS. This gives

+ 3[cos 6 - LUI) sin 6]312

where XI, II are the values of x, I at , = '1 (Fig. 5).
By substituting (4.7) in equation (2.6a) we can determine F+ (x, I) inside the torn

region L(/) < x < 1+(/). Similarly we can determine F_(x, I) inside the torn region.
Equations (3.9) and (3.3) now give the equations of motion for the determination of
the unknown functions 1=(/) when g:r. and p(x, I) are given functions. The procedure
outlined in this paragraph can be repeated for the positive and negative edges alter
nately until the solutions for I:r. converge. Usually three to four iterations are sufficient
to achieve a reasonable degree of accuracy.

As we have noted, the success of this procedure to determine the crack tip loci
depends strongly on the validity of (3.10). In the next section we compare the result
obtained by using (3.10) with exact analytical solutions which can be derived for re
stricted problems having self-similar properties.

3. UNIFORM PROPAGATION OF IN-PLANE BILATERAL CRACK

It has been shown in Appendix I, that a spontaneous bilateral crack will grow with
constant velocities at the edges if it has the following distribution of cohesions g:r. and
dynamic stress drop p(x, I).

g_ = a_(-x)ll2,

p(x, t) = Po

x<o (5.1)

where a:r. and Po are constants. Let the crack tip loci be given by I i= I = V:r. where
V=are constants. We determine the relations between a:r. and V=for this case using
(3.10) and compare with the exact analytical result (AI4). Equation (AI4) shows that
a+ < 0 for V+ > VR and a+ ~ 0 for V+ ~ VR. Hence if g= is a measure of the material
properties at the edges of the crack, then g:r. > 0, which implies V:r. ~ VR. Thus the
extension rates for self-similar cracks lie between zero and the Rayleigh wave velocity.
In general, the greater the coefficients of cohesion a:r., the slower the rates of exten
sion of the edges. This example is therefore a test which identifies the region of
validity of (3.10). From (2.6), (3.10) and (5.1), F:r. are constants inside the crack region
-V_I<X<V+I.

-F:: = p~) = po( 1 + fs(V., v; 1)!2(V; I) + ~~-I f3(S)fs(V., s) dS]

+ a:r. [f.c(V:;:, V; l)f2(V; I) + ~fl-I f3(S)f.c(V., s) dS] .

(5.2)
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(x - 1)(.\: -13- 1)]1/2

f2(X) = S(-X)

hex) = J... {_l_} [(x - 1)(13- 1 _ X)]112
2'lT S( -s)

4[xO - X)]112
f4(X, y) = 3'lT(I + y)ll2(l + xy)312

x
f s(x, y) = - I + xy

(5.3)

From (3.9), (3.1O), (5.1) and (S.2), it can be shown that (II)

(In) (b(1 ») 1/2_ ab)"2p(:;!) _ Cl+._ - a f(A)
1T 1 + V_

(m) [(I b)J 1/2_ ab)1I2p(!!.'! _ Cl_.+ a - f(A)
'IT l+V+

(5.4)

I - V-
a = 1 + v_

b = 1- V+
1 + V.;..

1
A = ab ' f(A) ::: [A 1/2 J + A h-l (I + A)J- + -2- cos A - J •

Using (3.3) and (5.1), (5.4) can be written as

a+clI + a-C12 = CI3

a+ C21 + U_ C22 ::: C23

where <i:!: = a:!: Ipo and

(5.5)

and C21> C22, C23 can be obtained from Cll, C12, CI3 by replacing V _. a, b by V ... , b, a
respectively.

For given values of V:!:, we obtain <X: from (5.5). The approximate solution (5.5) is
given in Fig. 7 by the dashed curves. The solid curves in Fig. 7 represent the exact



Spontaneous growth of an in-plane shear crack

4.0r----.,..---...,...---,.-----,-----,

3.2

975

2.4

1.6

0.8
.9 .8.7.6.5 .4 .3

OL-.-"'"'"'::~--:I.:----:!'-:---~':""""-~4.0

Fig. 7. Cohesive coefficients versus rupture speeds for the case of self-similar in-plane crack
propagation. Solid lines are the exact solution (AI4) while the dashed lines are the solution

obtained by using the approximation (3.10). The numerical entries are the ratios V _IVR.

analytical solution obtained from (AI4). There is a good agreement between the two
solutions except at low rupture speeds. This indicates that (3.10) is a good approxi
mation especially when we are interested in determining the tearing loci for rupture
speeds that are not small. It should be emphasized here that the exact nature of the
stress distribution is not displayed in (3.10). This is clear when we compare (3.10) with
the exact stress distribution (AI2) in the back edges. Thus to determine the exact stress
distribution in the back edge region for slow extension of the crack, we represent the
back edge stresses scaled with respect to the stresses at the respective edges by
two separate functions, one in the region 1 ~ xiI ~ 13 and the other in the region
13 ~ xiI ~ I i:t: I. Once the crack tip loci have been obtained using (3.10) and the method
outlined here, simultaneous iterations should be performed to correct the tearing loci
and the back edge stresses. For high rupture speeds, the corrections to l:t: are small
while these corrections are significant for low rupture speeds. For the case of anti
plane crack propagation, these corrections have been given earlier in II and will be
given separately for the in-plane cracks.

In general, the problem of spontaneous bilateral crack propagation is a complex non
linear problem. All attempts so far in the literature have focussed on purely numerical
solutions to the problem. We have endeavored to show that an approximation to the
stresses in the back edge region proves to be effective for the determination of the
rupture loci. It works well for both anti-plane and in-plane shear crack propagation
especially for high crack speeds. The exact stress distribution in the back edge region
is more complex for the in-plane problem than for the anti-plane problem. In any case,
both the exact back-edge stresses and the rupture loci can be obtained by the method
discussed here. To incorporate the derivative discontinuity in the back-edge stresses,
it is necessary to represent this by a function which has piecewise continuous deriv
atives in the two back edge regions that are separated by the S-wave front.
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APPENDIX
Exact solution of uniformly propagating bilateral crack

Let an in-plane bilateral crack initiate along the line x = Z = 0 and propagate uniformly with speeds V",
along the ±x-axis. At any time t, the displacement components arc u .. u(x, Z, t), v ... 0 and w .. w(x, Z, t)
along the x, y, Z axis respectively. In terms of the displacement potentials ell and 'It, u and w may be written
as

u(x, z, t) = <1>..• + 'It.•
w(x. z, t) .. <1>,. - 'I',x

where <I> and 'I' satisfy the wave equations

(AI)

(A2)a - 2c1l .. <I>,xx + <I>.u

~-2'" = 'I'..u + 'I'.u.

Let the superscripts (I) and (2) indicate the contribution to the field quantities by <I> and 'I' respectively. Then
ill), will, aW and ag) all satisfy the wave equation with speed a while those with superscript (2) satisfy the
wave equation with speed ~. We solve the problem with the boundary conditions

0'" = 0, z .. 0

l1.fl = -Po (constant), -V_T~x~ V+t, Z .. 0

u = 0, Ix I~ V", t, Z.. 0

(A3)

Since the problem is self-similar ii II, etc. are all homogeneous functions ofdegree zero. By the functionally
invariant method of Smirnoff and Sobolev (t3J (see also (14)), each of these quantities can be represented
by a function I(T) where t = XT + z(c- 2 - .,z)112 where c .. a or ~ according as the superscript is (1) or
(2). Thus we have

U(l),(21 = Im[ If 1)'(2)(TlII.I21 »)

wlll.(2) = 1m! we 1),121(TIII.121 »)
a~I)·(2) .. a~1),12) .. Im[I~II,(2)(TIII.12»1

a~~),12) .. Im[ lW·121 (T11),12))]

where Till and T(2) are functions of x, Z, t which satisfy

t = XT{I) + z(a - 2 _ T{I)2)112

t = XTC21 + Z(~ -2 _ T(212)112.

(A4)

(A5)

On the crack plane z = 0, -tIl .. T(2) .. tlx. From the equations of motion and stress-displacement relations,
we have

Iii .. ax.... + 0'•.•

a. = ~ [ (~ - 2) u,x + ~ w,.]
ax• .. ~(U,. + w... ).

(A6)

From (A3)-(A6), it can be shown that all the eight unknown functions U II
.(2), etc. are related to only
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Imh')

Fig. 8. Paths of integration in the complex T-plane used in (A9). Branch cuts extend to infinity
from :ta -I and 1is the path along the dotted lines.

one unknown function VeT) through the relations

U"'(T) .. 2/32T2V'(T}

U21'{T) .. (I - ZP2T2)V'{T)

Wn'(T) .. 2p2T{a- 2 - T2)II2V'(T)

W21 '(T) .. -T(I - 2/32T2)(/3-2 - T2)-II2V'(T)

rf~I'(T) = -4f.l.p2~(a-2 - T2)1/2 V'(T)

4f.l.p2(T2 - P- 2/2)2 V'(T)
r,~"(T)" - .......'---"-~--=~-;...:.(/3 - 2 - T2 )112

I~II'{T) = -I~2"{T) .. -2f.l.T{I - Zp2r )V'{T).

Following Kostrov [IS1. we take
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(A7)

(A8)

where A is an unknown constant to be determined from (A3). Substituting (A8) in (A7), we get the derivatives
of all the functions Un(T), etc. To integrate these functions, we note that in the complex T-plane all these
functions are regular with branch cuts along the real axis from - a - I to - QQ and a - I to QQ. Also the crack
plane z = 0 corresponds to the real axis in theT-plane with the origin representing t .. O. Since at t = O.
all the field quantities are zero, if I(T} denotes any of the functions lfH, etc. we have

(A9)

where the paths of integration C, and 1are sbown in Fig. 8.
The unknown constants A can now be determined from the boundary condition that on z =: 0, C1"z" - p.

- V _ t < X < V + t. This gives

Deforming the contour I as shown in Fig. 9 and replacing it by the dashed contour, we have

r" [(r + 13-212)2 - r(a-2 + r)ll2(p-2 + r)II2]
Po = ZII2Zf.l.p2A .Jo (p-2 + r)II2[(V:2 + r)(V:;:2 + r))$/04

x [(V:;:IV: 1 + T2)(1 + B)112 - TI V:;:' - V: I I(l - B)II2] dT
(AIO)

where

(AIO) determines A and thus we have tbe complete exact solution to the problem.

Stresus outside the crack
From (M) and (A7). the shear stress on the crack plane z = 0 is given by
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fm (.r)

Fig. 9. The contour I (dashed line) in the complex T"pfane that can be used to derive (A 10). The
integrals over the arcs at infinity approach zero. The hellvy solid line indicates the branch cuI.

(A11) yields

x> al

= II (;),

= h(;),
(AI2)

-I (t) -1 J, g2(T) d'l'
= 12("1 ) + II ; - '1("1 ) - "/_1 (V;' _ T)IIZ'

where "I-I = (j) -! + V:; ')/2 and the functions fl. f2. gl. 12 are given by

x < "fr

Letting x - V+ T+ • we have. from (AI2)

where

(AI3)

811'","~2AV:;:1 UO _ V~t(2)(1 _ v2,./~2n,n - {I - V2+'(2~2)}2] (AI4)
u+ "" (I + V+IV_)312(\ _ V~/~2)lr.I

0_ can be obtained from (AI4) by an interchange of V + and V-.


